Generalized Quasilinearization Method for Nonlinear Functional Differential Equations
نویسندگان
چکیده
We develop a generalized quasilinearization method for nonlinear initial value problems involving functional differential equations and obtain a sequence of approximate solutions converging monotonically and quadratically to the solution of the problem. In addition, we obtain a monotone sequence of approximate solutions converging uniformly to the solution of the problem, possessing the rate of convergence higher than quadratic.
منابع مشابه
An Extended Method of Quasilinearization for Nonlinear Impulsive Differential Equations with a Nonlinear Three-Point Boundary Condition
In this paper, we discuss an extended form of generalized quasilinearization technique for first order nonlinear impulsive differential equations with a nonlinear three-point boundary condition. In fact, we obtain monotone sequences of upper and lower solutions converging uniformly and quadratically to the unique solution of the problem.
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملThe Generalized Quasilinearization Method for Parabolic Integro-differential Equations
In this paper we consider the nonlinear parabolic integro-differential equation with initial and boundary conditions. We develop the method of generalized quasilinearization to generate linear iterates that converge quadratically to the unique solution of the nonlinear parabolic integro-differential equation. For this purpose, we establish comparison results for the parabolic integro-differenti...
متن کاملThe method of quasilinearization for the periodic boundary value problem for systems of impulsive differential equations
The method of quasilinearization of Bellman and Kalaba [2] has been extended, refined, and generalized when the forcing function is the sum of a convex and concave function using coupled lower and upper solutions. This method is now known as the method of generalized quasilinearization. It has all the advantages of the quasilinearization method such that the iterates are solutions of linear sys...
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کامل